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Chapter 1

Checking for Multiples

“You don’t have to understand how
rules work to use them . . . ”

1.1 Multiples of Three

Yuri “Hey, cuz! I have a quiz for you.”

Me “I love how you keep thinking you’re going to trip me up
some day.”

Yuri “That day might be today. Tell me this: is 123,456,789
a multiple of 3?”

Problem

Is 123,456,789 a multiple of 3?

My cousin Yuri was in eighth grade, and we’d
pretty much grown up together. She lived just up
the street, and often came over to read books and
work on math problems.
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Me “I guess you just made up a big number by stringing
together the digits 1 through 9?”

Yuri “That’s beside the point. Is it a multiple of 3?”

Me “Yes.”

Yuri “Couldn’t you at least pretend you had to think hard to
get the answer?”

Answer

Yes, 123,456,789 is a multiple of 3.

Me “For such an easy question? No. All you have to do is
add all the digits in the number and check if the sum is
a multiple of 3.”

Determining multiples of 3

To see if a number is a multiple of 3, add its digits and check if
the sum is a multiple of 3. For example, to check if 123,456,789
is a multiple of 3, add

1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9 = 45.

45 is a multiple of 3, so 123,456,789 must be too.

Yuri “You cheated. Somehow.”

Me “How is applying a rule cheating?”

Yuri “Well for one thing, how did you add up 1 through 9 so
fast?”

Me “I had it memorized.”

Yuri “You have got to be joking.”
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Me “Well, actually I memorized that the sum of 1 through
10 is 55, so I just subtracted 10 from that.”

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45

Yuri “Forgive me if I don’t waste precious brain cells remem-
bering that.”

Me “You don’t really need to. It’s almost just as easy to sum
it up using paired tens.”

Yuri “Meaning?”

Me “You can add the first 1 and the last 9 to get 10, right?
Then do the same with 2 and 8, 3 and 7, and 4 and 6.
That gives you four 10s and a 5 left over. Add those up
to get 45.”

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9

10

10

10

10

Paired tens make this addition problem easy

Yuri “Now that I like!”

Me “How’d you come up with the problem?”

Yuri “My math teacher showed us how to check if a number
is a multiple of 3 by adding its digits and seeing if the
sum is a multiple of 3.”

Me “So it’s cheating when I use a rule, but not when you
do?”

Yuri “Glad to see you’re catching on.”
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1.2 Another Check

Me “How about giving this one a shot?”

Problem

Is 103,690,369 a multiple of 3?

Yuri “Piece of cake. Let’s see, 1 + 0 + 3 + 6 + 9 + 0 + 3 +

6 + 9 is . . . uh . . . 37. And 37 isn’t a multiple of 3, so
103,690,369 isn’t either!”

Answer

103,690,369 is not a multiple of 3.

Me “That’s right. Took you long enough, though.”

Yuri “Well excuse me, Mr. Human Calculator.”

Me “Actually, you don’t need to calculate anything for this
one.”

Yuri “Not even paired tens?”

Me “Nope. When you use the rule, you can ignore digits
that are already multiples of three.”

Yuri “Whaaat?”

Me “You only need to add up the digits that aren’t multiples
of three.”

1+ 0+ 3+ 6+ 9+ 0+ 3+ 6+ 9︸ ︷︷ ︸
you can ignore these multiples of 3

Yuri “That only leaves a 1!”
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Me “That’s right. And since 1 isn’t a multiple of 3, this
number can’t be a multiple of 3.”

Yuri “More cheating!”

Me “Not at all. Do you see how adding a multiple of 3 to
another multiple of 3 just gives you a new multiple of 3?”

Yuri “I guess.”

Me “And how adding a multiple of 3 to a number that isn’t
a multiple of 3 won’t result in a multiple of 3?”

Yuri “Hmm . . . ”

1.3 Mathematical Proof

Me “It sounds like you haven’t convinced yourself that this
rule works.”

Yuri “What do you mean?”

Me “That you obviously know how to use the rule, but you
don’t understand it well enough to really get it.”

Yuri “Yeah, maybe.”

Yuri frowns and twists her hair with a finger.

Me “If you really want to be convinced, I can show you a
mathematical proof.”

Yuri “What’s a proof?”

Me “It’s where you apply certain conditions to show that
some mathematical statement must logically be true.”

Yuri “Not seeing why I would want to do that.”

Me “Because it gets rid of maybes. It’s a way of showing
that you’re absolutely, positively right.”
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Yuri “I’m always absolutely, positively right, but maybe these
proof things would be handy in convincing others.”

Me “I figured you’d see the attraction.”

Yuri “So show me how to do them.”

Me “Let’s start by limiting the discussion to numbers less
than 1000.”

What we want to prove

Let n be an integer, with 0 6 n < 1000 (i.e., n =

0, 1, 2, . . . , 998, 999), and let An be the sum of the digits in
n.

Then the following are true:

1 If An is a multiple of 3, then n is a multiple of 3.

2 If An is not a multiple of 3, then n is not a multiple of 3.

Yuri “Well that was easy.”

Me “No, no—this isn’t the proof. This is what we want to
prove.”

Yuri “I don’t remember wanting to prove anything about all
these n’s and An’s and all.”

Me “We need those to precisely describe what we’re doing.
Trust me, if you just say things like ‘this number’ or
‘that number,’ everything ends up becoming much more
confusing.”

Yuri “Why can’t we just use an actual number, like 123?”

Me “You can. In fact, a lot of times it’s best to start out
with a specific example like that.”
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Yuri “Here goes, then. 1 + 2 + 3 = 6, and 6 is a multiple
of 3. To check if that really worked, you divide 123 by
3, and get . . . uh . . . 41. Since we got a whole number as
the answer, that means 123 is a multiple of 3, too, so the
rule worked. Done!”

Me “Not done. All you did is verify that the proposition
works for one specific number.”

Yuri “And that’s wrong how?”

Me “It isn’t wrong at all. Like I always say, examples are
the key to understanding. What you just did shows you
know exactly what it is we want to prove.”

Yuri “But . . . ?”

Me “But an example isn’t a proof. We want to be more . . .
general.”

Yuri “And what does that mean?”

Me “Letting n = 123 is what’s called a specific case, and you
showed that this statement 1 works for that particular
value of n. But you can’t do that for every number, 0
through 999.”

Yuri “You doubt my abilities, do you?”

Me “Let me rephrase. Sure, you could check every number,
but it would be an awful lot of work, right?”

Yuri “Yeah, and I’m allergic to lots of work.”

Me “Then think of letter variables in math as a way to avoid
all that.”

Yuri “Convince me.”

Me “It’s called ‘generalization through the introduction of
a variable.’ For example, we can rewrite this n using
a,b, c, like this.”
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Representing numbers as letters

We can represent an integer n (0 6 n < 1000) using letters
a,b, c as follows:

n = 100a+ 10b+ c

Here, each of a,b, c is one of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Yuri “You’re making things worse.”

Me “It’s not that bad. Can you rewrite 100a+ 10b+ c using
multiplication symbols?”

Yuri “Like this?”
100× a+ 10× b+ c

Me “Right. See how we’re adding 100 times a, 10 times b,
and c?”

Yuri “Yeah, but what’s a?”

Me “It’s the digit in the hundreds place of the number. And
b is the tens digit, and c is the ones digit.”

Yuri crosses her arms and frowns.

1.4 Defining Things for Yourself

Me “Something bothering you?”

Yuri “Yeah. How can you know all that? That the hundreds
digit is a and all.”

Me “It’s not that I know what it is, I just defined things that
way. Those are definitions I made to use in the proof I’m
going to do.”

Yuri “You can just make stuff up like that?”
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Me “Sure, you can define things any way you like. I guess
it seems weird at first, but when you use equations to
work problems out, defining your own variables can be a
real help. I named these variables a,b, c, but anything
would do. Use whatever letters you like.”

Yuri “Go on then.”

Me “Okay, getting back to the problem. We rewrote n as

n = 100a+ 10b+ c.

We’re using a to represent the number in the hundreds
place, b as the number in the tens place, and c as the
number in the ones place. So for example, if n = 123,
then a = 1, b = 2, and c = 3.”

n  =   1   2   3   =  100 a + 10 b + c

1
0
0
s 

d
ig

it

1
0
s 

d
ig

it

1
s 

d
ig

it

• a is one of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• b is one of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• c is one of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Me “So are you comfortable representing n as 100a+ 10b+

c?”

Yuri “Got it!”
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1.5 From Ideas to Math

Me “This is good practice for representing mathematical ob-
jects as statements.”

Yuri “What’s a mathematical object?”

Me “It’s just a fancy name for a mathematical something,
like an integer that has some value 0 or higher, but less
than 1000. When you’re writing a proof, you’ll want
to write ideas like that as a mathematical expression.
‘Integer n such that 0 6 n < 1000,’ for example. Then
I took that a step further, and used a,b, c to represent
the number as 100a+ 10b+ c.”

Mathematical
Object

Mathematical
Expression

an integer that’s
at least 0, but
less than 1000

n = 100a + 10b + c

0 ≤ n < 1000

Yuri “It still feels like you’re just making a simple thing more
complex.”

Me “Sure, all these letters will be confusing if you aren’t
sure what they represent. But if you take the time to
understand what they’re doing, there’s nothing to be
afraid of.”

Yuri “Who said anything about being afraid? It just looks
like too much work.”

Me “Not if you have a good reason for doing things that
way.”

Yuri “Then hurry up and show me what that good reason is.
You were going to prove something, right?”



Checking for Multiples 13

Me “Moving on, then. The next thing I wanted to do was
add the digits of the number, and call their sum An. Do
you see how to do that?”

Yuri “Nothing hard there. You just write An = a+ b+ c.”

The sum of the digits in n can be written as

An = a+ b+ c.

Me “Exactly. Since we set things up so that a,b, c will be
the digits in the number, all we have to do is add those
three variables to find the sum of the digits in n.”

Yuri “So get to the part where you explain why we did all
that.”

Me “Okay, but first let me write a summary of what we’ve
done.”

What we have so far

We wrote an integer n (where 0 6 n < 1000) as

n = 100a+ 10b+ c.

We named the sum of n’s digits An, so

An = a+ b+ c.

Yuri “No problem there.”

Me “And here’s what we want to prove.”
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What we want to prove

Let n be an integer, with 0 6 n < 1000 (i.e., n =

0, 1, 2, . . . , 998, 999). Let An be the sum of the digits in n.
Then the following are true:

1 If An is a multiple of 3, then n is a multiple of 3.

2 If An is not a multiple of 3, then n is not a multiple of 3.

Yuri “So prove it already.”

1.6 The Power of Mathematical Statements

Me “Things will be easier if we rewrite what we want to prove
as mathematical statements.”

What we want to prove, rewritten

1 If a + b + c is a multiple of 3, then 100a + 10b + c is a
multiple of 3.

2 If a+ b+ c is not a multiple of 3, then 100a+ 10b+ c is
not a multiple of 3.

Yuri “You just replaced the An’s with a+ b+ c, and the n’s
with 100a+ 10b+ c, right?”

Me “Right. Now that everything is sorted out, let’s try yank-
ing out all the multiples of 3 that we can.”

Yuri “What do you mean, yank them out?”

Me “I mean doing this.”
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100a+ 10b+ c = 99a+a + 10b+ c rewrite 100a as 99a+a

= 3× 33a +a+ 10b+ c rewrite 99a as 3× 33a

= 3× 33a+a+ 9b+ b + c rewrite 10b as 9b+ b

= 3× 33a+a+ 3× 3b + b+ c rewrite 9b as 3× 3b

= 3× 33a+ 3× 3b +a+ b+ c change order of addition

= 3× (33a+ 3b) +a+ b+ c factor out a 3

100a+ 10b+ c = 3× (33a+ 3b) +a+ b+ c the final result

Me “Whatcha think?”

Yuri “What is this mess? Why write 100a as 3× 33a+ a?”

Me “Like I said, I want to yank out all the factors of 3 that
I can.”

Yuri “But why do you want to do that?”

Me “Just look at the final form of the equation.”

100a+ 10b+ c = 3× (33a+ 3b) + a+ b+ c

Yuri “What am I looking for?”

Me “Uh, maybe it will be easier to see if I change the order
of things.”

100a+ 10b+ c = a+ b+ c+ 3× (33a+ 3b)

Yuri “Or maybe not.”

Me “Do you see how this 3×(33a+3b) part here is a multiple
of 3?”

Yuri “Sure, because it’s something that’s being multiplied by
3.”

Me “Well that means the right side of this equation is a +

b+ c, plus some multiple of 3.”

100a+ 10b+ c = a+ b+ c+ 3× (33a+ 3b)︸ ︷︷ ︸
a multiple of 3
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Yuri “And?”

Me “And, like we said before, if you add a multiple of 3 to
some number, if that number was a multiple of 3 then
the result will be another multiple of 3. If it wasn’t, then
the result can’t be a multiple of 3. So this equation says
that whether or not 100a + 10b + c is a multiple of 3
depends on whether a+ b+ c is a multiple of 3.”

Yuri “Which is what we were aiming for.”

Me “Yep, and that completes the proof. We now know for
sure that if you want to see if a number is a multiple
of 3, you just have to check if the sum of its digits is a
multiple of 3.”

What we proved

Let n be an integer, with 0 6 n < 1000 (i.e., n =

0, 1, 2, . . . , 998, 999). Let An be the sum of the digits in n.
Then the following are true:

1 If An is a multiple of 3, then n is a multiple of 3.

2 If An is not a multiple of 3, then n is not a multiple of 3.

Me “We’ve only proved this works for numbers less than
1000, but we can generalize things further. Here’s where
the math gets really fun. First, we—”

Yuri “Whoa, hold up there.”

Me “What’s wrong?”

Yuri “I can follow the proof. I see the logic and all, at least.
But something still isn’t quite clicking.”

Me “Something in particular?”
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Yuri “That thing about adding 3 to a number, and whether
the result is a multiple of 3 depending on the first num-
ber. That feels, I dunno, kinda weak.”

Me “Ah, good point. Okay, let’s make it click!”

1.7 Remainders

Me “I think this is what’s bothering you, written out pre-
cisely.”

Yuri’s question

Let n be a nonnegative integer (n = 0, 1, 2, 3, . . .). Then,

1 If n is a multiple of 3, then the sum of n and a multiple
of 3 is a multiple of 3.

2 If n is not a multiple of 3, then the sum of n and a multiple
of 3 is not a multiple of 3.

Yuri “Yeah, I think that covers it. It makes sense, I guess, but
still . . . ”

Me “It will make more sense if you think about remainders
after dividing by three.”

Yuri “How does that help?”

Me “If you divide an integer by 3, there are three possible
remainders: 0, 1, or 2.”

Yuri “A remainder of 0? That would be no remainder, right?
Like, the number was evenly divisible by 3.”

Me “Yeah, sure. But the important thing is that there are
three possibilities.”

Yuri “Okay.”
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Me “Think about it like this.”

12

Island 0

Island 2 Island 1

0

12
45

78
1011

1314

3

6

9

..
.

......

Yuri “What on earth is this?”

Me “Imagine we have three islands, Island 0, Island 1, and
Island 2. You put the nonnegative integers on those
islands according to these rules.”

• Integers that leave a remainder of 0 after division by 3 go onto
Island 0.

• Integers that leave a remainder of 1 after division by 3 go onto
Island 1.

• Integers that leave a remainder of 2 after division by 3 go onto
Island 2.

Me “So 0 goes to Island 0, 1 goes to Island 1, and 2 goes to
Island 2, right?”

Yuri “Sure, I see that.”

Me “So where does 3 go, since there’s no Island 3?”
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Yuri “To Island 0, of course, since dividing 3 by 3 doesn’t leave
a remainder.”

Me “Yep. And 4 goes to Island 1, 5 goes to Island 2, 6 goes
to—”

Yuri “Enough already, I get it. They go around and around,
right? Every time you add 1 you move on to the next
island.”

Me “That’s right, you move around in the direction of the
arrows. So what happens when you add 3 to a number?”

Yuri “Um . . . I guess you don’t get anywhere. Because adding
3 means you end up on the same island you started
from.”

Me “And that answers your question.”

Yuri “It does? Hey, it does! Because if you started on Island 0,
where all the multiples of 3 are, then you’ll just stay
there. Same for the other islands, which don’t have any
multiples of 3!”

Me “Exactly. And adding a multiple of 3 means you’re just
adding 3 a certain number of times, so it’s the same
thing.”

Yuri “That clicking sound you just heard was me totally get-
ting this. Okay, I’m absolutely convinced.”

Me “Great! Now we’re up to speed on the proof we did for
numbers less than 1000. So like I said, the real fun comes
when we generalize to—”

Yuri “Whoa, hold up.”
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1.8 Yuri’s Proposal

Yuri “So about this method for checking if a number is a mul-
tiple of 3 . . . ”

Me “What about it?”

Yuri “I think I found an easier way, without messing around
with all the a’s and b’s and all that.”

Me “This should be interesting.”

Yuri “You add all the digits to do the check, right?”

Me “Yeah, sure.”

Yuri “Well, 0 is a multiple of 3, so just go adding 1s, and
you get multiple, not-a-multiple, not-a-multiple, multi-
ple, not-a-multiple, not-a-multiple, like that.”

Me “You lost me.”

Yuri “Okay, I’ll go slower for you. We know 0 is a multiple of
3, right?”

Me “Yes, it is.”

Yuri “And 1 is not a multiple of 3.”

Me “Correct.”

Yuri “And 2 isn’t a multiple of 3 either.”

Me “It is not.”

Yuri “So 0, 1, 2 goes multiple, not-a-multiple, not-a-multiple,
yeah?”

Me “Oh, what you want to say is that we hit a multiple of 3
on every third number?”

Yuri “That’s what I am saying!”
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0  1  2  3  4  5  6  7  8  9  10  11  12

Every third number is a multiple of 3

Me “Well that’s neat I guess, but we’re talking about ways
to check for—”

Yuri “That’s what this is! Pay attention! All the multiples
of 3 come every third number. But when you’re adding,
everything’s cool up to 9. The only difference is if you’re
adding to just the ones digit, or if you’re adding to the
tens digit, too. Get it?”

Me “Sorry, Yuri. I’m still lost.”

Yuri “Ugh! Why don’t you get this? Are you being dense on
purpose?”

Yuri seems close to tears. I bite my lip and pro-
ceed carefully.

1.9 Yuri’s Explanation

Me “Hey, Yuri. Let’s give it one more shot, a little slower
this time.”

Yuri glares at me, making me worry that I’ve lost
her, but she finally continues.

Yuri “I’m thinking in turn from 0.”

Me “Okay, from 0 then.”

Yuri “It works for 0, right?”

Me “Uh . . . what works?”

Yuri “Gah! If you’re checking numbers to see if they’re multi-
ples of 3 by adding digits and seeing if that gives you a
multiple of 3, that works when the number you’re check-
ing is 0, right?”
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Me “If n = 0 then An = 0, and both are multiples of 3, so
sure, that works.”

Yuri “So start from 0 and go up one at a time, through
1, 2, 3, 4, 5, 6, 7, 8, 9. When you do that, An and n both
increase by 1 each time, right? So if An is a multiple of
3 then n will be too, because An = n the whole way.”

Me “I see that, yeah.”

Yuri “So the only thing you have to worry about is when you
move up a digit. You’ve just got to make sure everything
works then.”

Me “When you move up a digit?”

Yuri “When you add 1 to a 9 somewhere.”

Me “Ah hah! I’m starting to see where you’re heading.”

Yuri “Then the 9 becomes a 0, and the next unit up gets a 1
added to it, right?”

Me “It does indeed.”

Yuri “Well that means the sum of all the digits is having 9
taken out of it, then 1 added!”

Me “Okay, I think I’m following you, but let me make sure.
You’re saying that if you add 1 to n, and doing that
results in two digits being changed, then the effect on
the sum of the digits is to subtract 9, then add 1. Like,
if n = 129 then An = 1 + 2 + 9 = 12. When you add 1
to n it becomes 130, so An becomes 1+ 3+ 0 = 4. And
that 4 is the same thing you get from subtracting 9 from
the first An, which was 12, then adding 1.”

Yuri “Yes! Exactly!”

Me “So as an equation it looks something like this.”

An+1 = An − 9+ 1 the effect of two digits changing
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Yuri “Uh . . . yeah, that’s it.”

Me “What about when more than two digits change, like
when you add 1 to 99 and get 100?”

Yuri “You subtract 9 for each 0 that popped up, then add
1. So you end up subtracting some multiple of 9, and
adding 1 at the end, right?”

Me “Wow, Yuri, this is good. So let’s see . . .When you add
1 to n, you’re subtracting some multiple of 9 from the
sum of n’s digits, and adding 1. As an equation, that
looks like this.”

An+1 = An − 9m+ 1 m is the number of 0s that appear
(m = 0, 1, 2, . . .)

Yuri “But subtracting a multiple of 9 means you’re subtract-
ing a multiple of 3. On the picture you drew, that means
you’re just spinning backwards around the three islands
some number of times before you end up back where you
started.”

Me “Because 9 is a multiple of 3. Yeah, you’re right.”

Yuri “So even when more than one digit changes, the effect is
the same as if just one digit increased by 1. And that
means that if n+ 1 is a multiple of 3, then An+1 is too,
and if n+ 1 isn’t, then An+1 isn’t either.”

Yuri sits back, glowing with self-satisfaction.

Me “This is really cool, Yuri.”

Yuri “Isn’t it?”

Yuri’s discovery

As you increase n in order from 0, 1, 2, . . ., either both n and
the sum of its digits An will be multiples of 3, or they both
won’t.
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Me “By the way, you can use the same kind of method to
check for multiples of 9.”

Yuri “Yeah, we did that one in class, too.”

Me “You did?”

Yuri “Sure. You’re talking about adding the digits in a multi-
ple of 9, and seeing if that gives a multiple of 9, right?”

Me “Right. And what you discovered here made me realize
why that works—because when other digits change it’s
the same as subtracting 9 and adding 1 to the sum of
the digits, just like in this problem.”

Yuri “Feel free to call me when you need more math mysteries
solved.”

Me “Hey, wait a second—”

My mom calls from the dining room.

Mom “You kids want some cookies?”

Yuri “We’re on our way!”

Me “But I—”

Yuri “Didn’t you hear? Cookies!”

I kept thinking as Yuri dragged me down the hall. The methods
for checking for multiplicity by 3 and 9 were definitely related to
Yuri’s discovery, because 3 and 9 both divide 9 evenly. But what’s
so special about 9?

Of course! It’s because we count in decimal, in base-10! So
couldn’t we generalize that to base-n? Couldn’t we create a rule
for determining if numbers in base-n were multiples of n − 1,
using this “subtracting n− 1 and adding 1” pattern?

“ . . . but if you don’t understand how rules work, you’ll never be able to
improve them.”



Problems for Chapter 1

Problem 1-1 (Checking for multiples of 3)

Which of (a), (b), and (c) are multiples of 3?

(a) 123456

(b) 199991

(c) 111111

(Answer on page 187)

Problem 1-2 (Representation as mathematical statements)

Let n be an even integer in the range 0 6 n < 1000. Letting
a,b, c respectively be the hundreds, tens, and ones digits of n,
what values can a,b, c take?

(Answer on page 188)
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Problem 1-3 (Building a table)

In this chapter, the narrator used An to represent the sum of
the digits in an integer n. For example, when n = 316,

A316 = 3+ 1+ 6 = 10.

Using that, fill in the blanks in the following table:

n 0 1 2 3 4 5 6 7 8 9

An

n 10 11 12 13 14 15 16 17 18 19

An

n 20 21 22 23 24 25 26 27 28 29

An

n 30 31 32 33 34 35 36 37 38 39

An

n 40 41 42 43 44 45 46 47 48 49

An

n 50 51 52 53 54 55 56 57 58 59

An

n 60 61 62 63 64 65 66 67 68 69

An

n 70 71 72 73 74 75 76 77 78 79

An

n 80 81 82 83 84 85 86 87 88 89

An

n 90 91 92 93 94 95 96 97 98 99

An

n 100 101 102 103 104 105 106 107 108 109

An

(Answer on page 189)



About this sample chapter

Thank you for reading this sample. I hope you enjoyed reading it
as much as I enjoyed translating it.

This is the second volume in a series of books that aims at ad-
dressing select topics from a variety of areas of mathematics. These
books present fun excursions that learners are less likely to see in
typical classroom settings. They attempt to illustrate problem solv-
ing techniques in those areas, and to show how fun and exciting
mathematics can be (especially when enjoyed with friends!). The
presentation is via dialogue between characters from theMath Girls
series of books, which generally contain higher level math.

The first volume, Math Girls Talk About Equations & Graphs,
develops topics such as using variables in equations, polynomials,
setting up systems of equations, proportions and inverse propor-
tions, the relation between equations and their graphs, parabolas,
intersections, and tangent lines.

In addition to what you just read, Math Girls Talk About In-
tegers covers topics such as finding primes, the interesting math-
ematics behind a magic trick, and using remainders from division
to solve a problem based on clocks. A “final boss” chapter tackles
a challenging proof by mathematical deduction, a problem from an
actual Japanese college entrance examination.

The next volume, Math Girls Talk About Trigonometry, is
scheduled for release around December 2014. That book will of

http://bentobooks.com/mathgirls/
http://bentobooks.com/mathgirls/
https://www.createspace.com/4770485
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course take up topics from trigonometry, from the basics of how
the trigonometric functions are defined to fun explorations of Lis-
sajous curves, methods of estimating pi, and using vectors to find
the trigonometric addition formulas.

More books are planned, covering topics such as sequences and
series, the mathematics of change, math with vectors, and probabil-
ity. We hope you enjoy them all.

If you would like to purchase the full version of this book, you
can order it directly from our printer, via major online booksellers,
or by special order at your local book store. We hope you enjoy it,
and the rest of the Math Girls books!

Tony Gonzalez

http://bentobooks.com/
@BentoBooks

@tonygonz

https://www.createspace.com/4980111
http://bentobooks.com/
https://twitter.com/BentoBooks
https://twitter.com/tonygonz
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prime number, 27, 28
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