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To my readers

This book contains math problems covering a wide range of difficulty.
Some will be approachable by middle school students, while others
may prove challenging even at the college level.

The characters often use words and diagrams to express their
thoughts, but in some places equations tell the tale. If you find
yourself faced with math you don’t understand, feel free to skip over
it and continue on with the story. Tetra and Yuri will be there to
keep you company.

If you have some skill at mathematics, then please follow not only
the story, but also the math. You might be surprised at what you
discover. You may even learn something about the wonderful tale
that you yourself are living.

—Hiroshi Yuki





Prologue

God made integers.
All else is the work of man.

Leopold Kronecker

We count in a world of integers. We count birds, stars, the number
of days until the weekend. When we’re children, we count to see how
long we can hold our breath.

We draw in a world of figures. We use compasses to draw arcs,
rulers to draw lines, and we are amazed at the constructions that
result. We run through the schoolyard dragging an umbrella, and
turn to see a long, winding line stretching toward the horizon.

We live in a world of mathematics. God made the integers, Kro-
necker said. But Pythagoras and Diophantus bound the integers in
right triangles. And then came Fermat... Ah, Fermat, and his silly
little note. A problem that anyone could understand, but no one
could solve. History’s greatest puzzle—if it’s fair to call a problem
that took mathematicians three centuries to solve a mere “puzzle.”

But true forms are hidden. Things once lost are found again.
That which has vanished reappears. Loss and rediscovery, death and
rebirth. The joy of life and the burden of time.

Consider the meaning of growth.

Question the meaning of solitude.

Know the meaning of words.
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Memories are ghosts lost in the mist. I recall only fragments: the
silver Milky Way, a warm hand, a trembling voice, chestnut hair.

So that’s where I’ll begin, on a Saturday afternoon



Chapter 1

Infinity in Your Hand

Gauss’s path was the way of
mathematics, a road paved by
induction. “From the specific to the
general!” was his slogan.

Teiji Takagi
Historical Tales from Modern

Mathematics

1.1 The Milky Way

“It’s beautiful!” Yuri said.
“Yeah, more like jewels than stars.”
I was in the eleventh grade. Yuri was in eighth. She’s my cousin

on my mother’s side, but she hung around my house often enough
that people mistook her for my sister. We’d been playmates since we
were little, and her house was just down the street.

On days when we didn’t have school, it wasn’t unusual to find
her lounging in my room with her nose buried in one of my books.
Today, it was a coffee table book of astronomy.

Vega, Altair, Deneb...
Procyon, Sirius, Betelgeuse...
At one level, a field of stars is nothing but a collection of points

of light, but there was something about the fleeting patterns that
enthralled us both.
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“I heard somewhere that there are two kinds of people,” Yuri said.
“Those who look up at the night sky and try to count the stars, and
those who look for shapes in them. Which are you?”

“The counting kind,” I replied. “Definitely the counting kind.”

1.2 Discoveries

“So what’s high school like?” Yuri asked, her chestnut ponytail bounc-
ing as she replaced the book on my shelf. “Hard?”

“Nah, not really,” I said, cleaning my glasses.
“These books sure look hard.”
“Those aren’t my school books. Those are for fun.”
“Wait, the hard books are the ones you read for fun?”
“Learning isn’t fun if you don’t test your limits.”
Her eyes ran along the shelf. “So many math books.” She stood

on her toes to read the spines of some of the ones higher up.
“Not a math fan?” I asked.
Yuri glanced back at me.
“I don’t hate it, but...I definitely don’t like it as much as you.”
“Marathon math sessions in the library after school aren’t for

everybody.”
“The library? Really?”
“Don’t hate on the library. It’s cool in the summer, warm in the

winter. Plenty to read. Stick me in a library with a math book, a
notebook, and a pencil, and I’m pretty much set.”

“Let me get this straight. You do math. For fun. And it’s not
even, like, extra credit or anything?”

“I don’t really need extra credit in math.”
“And you do...what? Solve for x?”
“Sometimes. When there’s an x to solve for. I also mess with

equations, draw graphs, you name it.”
“Do I dare ask why?”
“I dunno. The beauty of it, I guess.”
“Beauty. In math.” Yuri raised an eyebrow.
“You’d be surprised.”
“Okay,” she said. “Surprise me.”
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1.3 Odd One Out

I pulled out my notebook and waved Yuri over to my desk. She
dragged a chair up beside mine and took a pair of plastic glasses
from her shirt pocket before peering down at the open page.

“You write like a girl,” she said.
“That’s not my handwriting. It’s a quiz a friend wrote for me.”
“Fine, your friend writes like a girl.”
“I’ll be sure to tell her.”

Which number doesn’t belong?

101 321 681

991 450 811

“Doesn’t look like any quiz I’ve ever taken,” Yuri said.
“It’s more like a game. Just figure out which number is different

from the others.”
“No sweat. 450, right?”
“Good. And why is that the odd one out?”
“Because it’s the even one out. It ends with 0. All the others end

in 1.”
“Exactly. Okay, how about this one? ”

Which number doesn’t belong?

11 31 41

51 61 71

“Huh. All of them end in 1 this time.”
“You’re looking for something else here. This one’s still on the

easy side, by the way.”
“Says you.” Yuri crossed her arms. “I give up.”
“The answer is 51.”
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“What’s so special about 51?”
“It’s the only one that isn’t a prime number. You can write 51 as

51 = 3× 17, so it’s a composite. You can’t do that to the others.”
“Somehow I don’t feel bad for not knowing that.”
“Give the next one a shot: ”

Which number doesn’t belong?

100 225 121

256 288 361

“256,” Yuri said, “because it doesn’t have a pair. See how 100 has
that 00, and 225 has a 22, and 288 has an 88?”

“What about 121?”
“Still has a pair. Two 1s.”
“Okay, then how do you explain away 361?”
“That’s the exception that proves the rule?”
“Nice try. The answer’s actually 288.”
“How come?”
“It’s the only one that isn’t the square of an integer: ”

100 = 102 225 = 152 121 = 112

256 = 162 288 = 172 − 1 361 = 192

“Again, not knowing proves I’m normal.”
“How about a real challenge? This one took me a whole day: ”

Which number doesn’t belong?

239 251 257

263 271 283

“Much more interesting than this problem is the fact that you
could spend a whole day thinking about it.”



Infinity in Your Hand 9

My mother entered the room with two cups of hot chocolate.
Yuri beamed. “Thanks!”
“How’s your foot?” Mom asked.
“It’s fine.”
“You hurt your foot?” I asked.
“Nothing big,” Yuri shrugged. “Sometimes I get these pains in my

heel.”
“Growing pains, maybe?” my mother suggested.
“Dunno. I’m going to the doctor next week to get it looked at.”
“Well, I hope it’s nothing serious,” she said, scanning my bookshelf.

“You’re over here so much, you should bring some of your own books.
Something more...interesting.”

“Oh, I love the books here!” Yuri said. “And the hot chocolate!”
“You staying for dinner?”
“Sure! If you don’t mind.”
“You’re always welcome, you know that. Anything in particular

you kids want?” She looked back and forth between us.
“Something healthy,” Yuri said.
“But tasty,” I added.
“And exotic!”
“But...with a Japanese flair.”
“Why can’t you ask for macaroni and cheese like normal kids,”

Mother sighed, heading back downstairs. “I’ll see what I can whip
up.”

1.4 Clock Math

“I was promised beauty,” Yuri said. “These quizzes aren’t cutting it.”
“Okay, how about some clock math?”
“Clock math,” she repeated, brimming with unenthusiasm.
“Draw a circle.” I pushed the notebook and pencil toward her.

She sat, staring at it. “You do know what a circle is, right?”
“Gee, I think so.” Yuri rolled her eyes and drew.
“Okay, now pretending that’s a clock, start from the 12 o’clock

position and draw a straight line to the 2 o’clock position, then to
4 o’clock, 6 o’clock, and so on, skipping every other number. Make
sense?”
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“Sure.”
“What happens when you do that?”
Yuri drew the lines.

1

2

3

4

5
6

7

8

9

10

11
12

2 steps

“I got a sixagon, and I ended up back at 12 o’clock.”
“A hexagon—you hit 2, 4, 6, 8, 10, and 12, and skip 1, 3, 5, 7, 9,

and 11.”
“Yeah,” Yuri nodded, “hit all the evens, skip all the odds.”
“Good,” I said, “you know about evens and odds.”
Yuri punched my shoulder. “Just because I’m not a math geek

doesn’t mean I’m an idiot.”
“The jury’s still out on that one.”
Yuri wound up to throw another punch, so I put jokes aside and

returned to the math.
“Okay, let’s start a new clock. This time, try connecting every

third number, 3, 6, 9, and 12.”
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1

2

3

4

5
6

7

8

9

10

11
12

3 steps

“I got a diamond.”
“Bravo. Next we’re going to make the number of steps 4.”
“The number of steps?”
“When we connect every fourth number, I’m going to call that

setting the number of steps to 4. So what happens?”

1

2

3

4

5
6

7

8

9

10

11
12

4 steps

“I connected 4, 8, and 12, and got a triangle.”
“Okay, here’s where it gets good. Next, try connecting every fifth

number. In other words—”
“—in other words, the number of steps is 5. I get it, I get it.”
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1

2

3

4

5
6

7

8

9

10

11
12

5 steps

“Oh, wow. Totally did not see that coming. I hit all of them.”
“Right. You completely cycled through the numbers.”
“After a few times around the loop, yeah. You miss the 12 a

couple times, which lets you hit all the numbers before you get back
where you started.”

“Let’s call doing that ‘making a complete cycle.’ So moving around
the clock when the number of steps is 5 makes a complete cycle.”

“Okay.”
“So what happens with 6 steps?”

1

2

3

4

5
6

7

8

9

10

11
12

6 steps

“Boringest. Drawing. Ever.”
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“Maybe we’ll hit pay dirt with lucky 7.”
“Let’s see... 12, then 7, then 2, 9, 4... Looking good.”

1

2

3

4

5
6

7

8

9

10

11
12

7 steps

“A complete cycle!” Yuri practically squealed.
“Have you noticed something?”
“Like what?”
“Like anything.”
Yuri stared at the graph. She pushed her glasses back and tugged

on her ponytail.
“What am I not seeing here?”
“Compare it with the 5-step clock. Trace your finger along the

lines.”

1

2

3

4

5
6

7

8

9

10

11
12

1

2

3

4

5
6

7

8

9

10

11
12

5 and 7 steps
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“Hey, they’re reversed. Going 7 steps is just like going 5, but
backwards.”

“Let’s see how 8 steps turns out...” I said, reaching for the pencil.
Yuri batted me away.

“Hands off.”

1

2

3

4

5
6

7

8

9

10

11
12

1

2

3

4

5
6

7

8

9

10

11
12

4 and 8 steps

“Cool,” Yuri said. “8 is the reverse of 4.”
Yuri hurried through a couple more graphs.

1

2

3

4

5
6

7

8

9

10

11
12

1

2

3

4

5
6

7

8

9

10

11
12

3 and 9 steps

1

2

3

4

5
6

7

8

9

10

11
12

1

2

3

4

5
6

7

8

9

10

11
12

2 and 10 steps
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“Y’know, this is kinda neat.”
“Don’t forget 1 and 11.”
“1 step? Oh, you just don’t skip anything. That’s a complete

cycle, too, I guess.”

1

2

3

4

5
6

7

8

9

10

11
12

1

2

3

4

5
6

7

8

9

10

11
12

1 and 11 steps

“Poor 6 gets paired with itself.”

1

2

3

4

5
6

7

8

9

10

11
12

1

2

3

4

5
6

7

8

9

10

11
12

6 and 6 steps

“And that’s all of them,” Yuri said. “Huh. Who knew you could
learn so much just drawing clocks?”

1.5 Conditions for a Complete Cycle

“So this is what you do in the library?” Yuri asked.
“I do all kinds of things. I was about your age when I first played

around with this. I filled a whole notebook with clocks.”
“Well then there’s got to be more to it than just drawing lines.”
“Sure there is. Like, when do you get a complete cycle?”
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“We already know that. With 1, 5, 7, or 11 steps.”
“Yeah, but why those numbers? Let’s write down what we know

so far: ”

Steps and complete cycles

1, 5, 7, and 11 steps result in a complete cycle.
2, 3, 4, 6, 8, 9, and 10 steps do not result in a complete cycle.

“I just said that.”
“Sometimes it helps to write down everything you know. We want

to look at these steps and see if we can’t find a pattern. Using what
you know to find a general rule is called induction. So what do you
think determines if you’ll get a complete cycle?”

I wrote a problem out in the notebook:

Problem 1-1 (Requirements for a complete cycle)

What property must a number of steps have to result in
a complete cycle?

“I have no idea, but this is still kinda cool.” She leaned in to
whisper, “It’s almost like I’m doing real math!”

1.6 Going Cycling

“Let’s make a table and list the numbers we cycled through for each
number of steps,” I said. “We don’t care what order we hit them,
though: ”
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1 1 2 3 4 5 6 7 8 9 10 11 12

2 2 4 6 8 10 12

3 3 6 9 12

4 4 8 12

5 1 2 3 4 5 6 7 8 9 10 11 12

6 6 12

7 1 2 3 4 5 6 7 8 9 10 11 12

8 4 8 12

9 3 6 9 12

10 2 4 6 8 10 12

11 1 2 3 4 5 6 7 8 9 10 11 12

“How do you read this?” Yuri asked.
“The column on the left is the number of steps. Everything on

the right is the numbers you cycle through, smallest to largest.” I
pointed at the third row. “So this row says that with 3 steps, we
make four stops, at 3, 6, 9, and 12.”

“Okay.”
“Does the table tell you anything?”
“Something about multiples?”
“What about them?”
“Mmm, never mind.”
“No, go ahead. What did you notice?”
“Well, it looks like every row is a list of multiples of the first

number in the row.”
“For example?”
“Like, in the second row. 2, 4, 6, 8, 10, and 12 are all multiples of 2.

And in the row you just talked about, 3, 6, 9, and 12 are all multiples
of 3. So that means to hit all the numbers—to make a complete
cycle—the smallest number has to be 1, like for step numbers 1, 5, 7,
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and 11. Because 1 is the only number that’s a factor of all the
numbers!”

“You’re absolutely right,” I said. “The rows for the number of
steps that make a complete cycle start with 1, and only those rows
do.”

“So I solved the problem?”
“Not quite. The problem asks what properties those numbers of

steps have. So you have to figure out what kind of steps will have a
1 in the list of numbers that they cycle through.”

“Not sure I get it.”
“Okay, let’s call ‘the smallest number you cycle through’ the

‘minimum cycle number.’ You just said a step will give a complete
cycle if its minimum cycle number’s 1, right?”

“Right.”
“So we want to know if there’s some way to use the number of

steps to figure out the minimum cycle number. Here, I’ll write a list
of the steps and the minimum cycle numbers you found: ”

Steps −→ Minimum cycle number

1 −→ 1

2 −→ 2

3 −→ 3

4 −→ 4

5 −→ 1

6 −→ 6

7 −→ 1

8 −→ 4

9 −→ 3

10 −→ 2

11 −→ 1

“Do you see a way to go from one to the other?”
“Not really. It starts off nice—1, 2, 3, 4—but then it jumps back

down to 1.”
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“Here’s a hint. There are twelve positions on the clock, 1 through
12, right? Let’s add that to the list: ”

Number of values and steps −→ Minimum cycle number

12 and 1 −→ 1

12 and 2 −→ 2

12 and 3 −→ 3

12 and 4 −→ 4

12 and 5 −→ 1

12 and 6 −→ 6

12 and 7 −→ 1

12 and 8 −→ 4

12 and 9 −→ 3

12 and 10 −→ 2

12 and 11 −→ 1

Yuri coiled her ponytail around her finger while she thought.
“Multiples again? The numbers on the left are all multiples of the

number on the right. Like, the fourth one from the bottom. There’s
a 12 and an 8 on the left, and a 4 on the right. 12 and 8 are both
multiples of 4.”

“And what does that tell you?”
“I’ve seen this at school... It’s a common multiple! No, wait—the

other one—a common divisor! The minimum cycle number on the
right is a divisor of the two numbers on the left. Since it’s a divisor
of both of them, it’s a common divisor, right? The minimum cycle
number is a common divisor of the number of values and the steps!”

“Nice! But you left out one important detail.”
“What detail? Oh, wait.” She held out a hand to stop me from

saying the answer. “I get it. It’s not just a common divisor, it’s the
greatest common divisor.”

“So when will you get a complete cycle?”
“When the greatest common divisor is 1.”
“And there’s the answer to the problem.”
“Woo!”
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Answer 1-1 (Requirements for a complete cycle)

A complete cycle occurs when the greatest common divi-
sor (GCD) of the number of values and the steps is 1.

“In other words,” I said, “when they’re relatively prime.”
“What’s that mean?”
“What you just said—that their greatest common divisor is 1.

Here’s a formal definition: ”

Relatively prime (coprime)

Two positive integers a and b are called “relatively prime” (or
“coprime”) if their greatest common divisor (GCD) is 1.

“So 12 and 7 are relatively prime,” I said, “since their greatest
common divisor is 1, but 12 and 8 aren’t, because theirs is 4. So
here’s another way to answer the problem: ”

Answer 1-1a (Requirements for a complete cycle)

A complete cycle occurs when the number of values and
the steps are relatively prime.

“You learn something every day,” Yuri said.
“Good for you, keeping up like that. Making me explain how to

read the table and all. It’s important to be sure you understand every
step in a problem.”

“Nah, I’m just dumb, so I have to ask a lot of questions.”
“There’s nothing dumb about asking questions. What’s dumb is

not asking them when you don’t understand something.”
Yuri grinned. “I think that’s the first time I’ve been complimented

for not understanding something.”

1.7 Beyond Human Limits

“So, all this clock stuff... Is this really math?” Yuri asked.
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“Why wouldn’t it be?”
“Well, jumping around on clock faces, making tables... It feels

more like a game. More than anything I’ve ever done in class, at
least. I mean, just what is math?”

“Tough question. I guess math is a lot of things, but investigat-
ing the properties of numbers is a big part of it. That branch of
mathematics is called ‘number theory.’ Drawing pictures, making
tables, guessing how numbers will behave—it might seem like playing
around, but this is really important stuff. Big truths usually aren’t
easy to see at first, so using tools like induction to go from the specific
to the general is key.”

“Interesting, maybe. But important? I’ve gotten by fine without
it so far.”

“Look at it this way: A normal clock only has twelve positions, so
we were able to test all the possible steps ourselves. But what if you
wanted to know what happens on a clock with a hundred positions?
And if you were patient enough to figure that out by hand, what
about one with a thousand? Or a million?”

“Your hand’d probably fall off.”
“If you drew them all, sure. But therein lies the true power of

mathematics—once you notice that the greatest common divisor of
the number of values and the steps tells you everything you need,
you don’t have to draw anything. Just find the hidden pattern, and
you can ride it to places you’d never get to on your own.

“Mathematics is a gateway. It lets you travel though time in a
heartbeat. It lets you fold up infinities and hold them in the palm of
your hand. That’s what’s so amazing about it.”

“Not as amazing as how worked up you get talking about this
stuff. You make my math teacher look like she’s allergic to algebra.”
Yuri laughed. “Speaking of which, you’d make a good math teacher.
Bet I’d get better grades in your class.”

“You’ll probably already be graduated by the time I’m old enough
to be your teacher... Probably.”

“Hey!”
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1.8 What Things Really Are

“So I never got the answer to that problem that took you all day,”
Yuri said. She turned back to the page in my notebook:

Which number doesn’t belong?

239 251 257

263 271 283

“Oh, that. It’s actually pretty simple, once you hear the answer.
All these numbers are primes, which means they’re all odd numbers,
since 2 is the only even prime. Do you see how dividing an odd
number by 2 will always leave a remainder of 1?”

“Yeah, sure.”
“The trick here is to divide by 4, not 2. I’ll write it out: ”

239 = 4× 59+ 3 251 = 4× 62+ 3 257 = 4× 64+ 1

263 = 4× 65+ 3 271 = 4× 67+ 3 283 = 4× 70+ 3

“Um...so what’s the answer?”
“When you divide 257 by 4, you get a remainder of 1. For all the

others, you get a remainder of 3.”
“Okaaay... And why did you try dividing them by 4, exactly?”
“Well, when you’re playing with integers, dividing them by 2 is

a pretty common trick to check if they’re even or odd, since the
remainder tells you. Dividing by 4 does something similar, because
it leaves a remainder of 1 or 3 for an odd number. Took me a whole
day to think of that, though. I was crushed.”

“Who wouldn’t be,” Yuri deadpanned. “Y’know, as nerdy as you
can be, you’re fun. I enjoyed that clock stuff. Let’s do this again
sometime.” She paused in thought for a moment. “Hey, I have an
idea. Why don’t you teach me math? So I don’t have to drop out of
junior high and wait for you to become a real teacher.”
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“I don’t mind teaching you, but only if you promise to think hard
for yourself, too. Don’t just assume you know things, make sure you
know them.”

“Ha! You sound just like the cat teacher.”
“Sorry? Cat teacher?”
“It’s this old cartoon movie my dad has. What was it he said...

Something like, ‘can any of you tell me what that fuzzy white streak
really is?’ ”

“Now you’re really losing me.”
“He was talking about the Milky Way. About how some people

used to think it was a river, but really it’s millions of tiny stars. The
cat teacher asks this kid about it, but the kid doesn’t know. Turns
out the cat teacher doesn’t know either, not really. The kid rides on
the Milky Way Railroad, and finds out the truth.”

“Oh, ‘Night on the Galactic Railroad.’ I’ve heard of that.”
“That’s the one!”
“ ‘Can you tell me what it really is,’ huh? I like that,” I said.

“Always a good thing to ask.”
My mother called from the kitchen. “Dinnertime! Come on down

for some healthy, tasty, exotic, Japanese eggplant curry!”





Chapter 2

Pythagorean Triples

Then along comes the Taniyama-
Shimura conjecture, the grand surmise
that there’s a bridge between these two
completely different worlds.
Mathematicians love to build bridges.

Simon Singh
Fermat’s Enigma

2.1 Rooftop Lunch

“You okay?” Tetra asked.
“Wait...what?” I blinked, my eyes regaining their focus.
“Sorry,” Tetra grinned. “Didn’t mean to wake you.”
Tetra and I had gone to the roof to eat lunch. There was a bite

to the wind, but it felt good to be out under blue skies. Tetra was
working at a bento box with a pair of chopsticks, while I picked at a
muffin.

“Guess I kinda zoned there.”
She smiled. “You had me worried for a minute.”
Tetra was in her first year of high school, one year behind me.

She was a small girl with short hair, big eyes, and a smile that rarely
left her face. She was one of my “math friends.” I was supposed to
be tutoring her, but her unique take on things often meant our roles
were reversed.
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“Hey, did you get a card from Mr. Muraki?” I asked.
Mr. Muraki was our math teacher. He had taken a liking to us,

and would regularly slip us index cards with all sorts of interesting
math problems. They rarely had anything to do with our classwork,
which made for a refreshing change of pace. We always looked forward
to what he would come up with next.

“Oh, yeah! Completely forgot!” Tetra took out a small card and
handed it to me. I read it at a glance; it was just a single line:

Problem 2-1

Are there infinitely many primitive Pythagorean triples?

“That’s it?”
“Guess so,” Tetra mumbled around a mouthful of fried egg.
“So you know about Pythagorean triples.”
“Well, duh! Who doesn’t?” Tetra traced a right triangle in the air

with her chopsticks. “ ‘The square of the hypotenuse is equal to the
sum of the squares of the sides,’ right?”

I sighed.
“Er, not right?”
“That’s the Pythagorean theorem.” I picked up Tetra’s notebook

and wrote the full statement:

The Pythagorean theorem

In any right triangle, the square of the length of the hypotenuse
c is equal to the sum of the squares of the lengths of the legs
a,b.

a
c

b

a2 + b2 = c2
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“So...they’re different.”
“Yeah, but now that you mention it, I guess you could think of

a Pythagorean triple as the lengths of the sides of a right triangle,
only where each length is an integer. Like this: ”

Pythagorean triple

Three positive integers a, b, and c are called a “Pythagorean
triple” if a2 + b2 = c2.

“The definition of a primitive Pythagorean triple is just a little
bit different: ”

Primitive Pythagorean triple

Three relatively prime positive integers a, b, and c are called
a “primitive Pythagorean triple” if a2 + b2 = c2.

“So if you have a right triangle where the length of each side is
an integer, then those three lengths form a Pythagorean triple. If
the lengths are also relatively prime, then they form a primitive
Pythagorean triple. Your card is asking if there are an infinite number
of those.”

“Okay... No, not okay. What does ‘relatively prime’ mean?”
“That their greatest common divisor is 1.”
Tetra raised her eyebrows.
“Here, let me give you an example. (3, 4, 5) is a Pythagorean triple.

See?” I wrote in her notebook:

32 + 42 = 52

9+ 16 = 25

“(3, 4, 5) is also a primitive Pythagorean triple, because the
biggest number that evenly divides these numbers—their greatest
common divisor—is 1.”

“Okay, I’m with you so far. Can you show me a Pythagorean
triple that isn’t primitive?”
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“Sure, just double these three and see what happens.”
“So (6, 8, 10)? Well, 62 is 36, 82 is 64, and 102 is 100, and 36+64 =

100, so yeah, this has to be a Pythagorean triple.” Tetra paused and
rested her chopsticks on her lips. “Oh, but 2 is a factor of 6, 8, and
10, so 1 can’t be the greatest common divisor, which means this isn’t
a primitive Pythagorean triple.”

“See, that wasn’t so bad.”
“I’m still missing something, though. Since a2+b2 = c2 will work

for any right triangle, and you can just change the lengths of the
sides to make an infinite number of right triangles, why wouldn’t
there be an infinite number of primitive Pythagorean triples?”

“You’re right. You are missing something. Go back and look at
the conditions in the definition.”

Tetra stared at the definition. “Ah ha!” She jabbed the notebook
with a chopstick. “Here’s what I forgot. They all have to be integers.
It’s easy to set up a right triangle so that two of the sides have an
integer length, but that doesn’t mean the third side will.”

“Exactly! The way to start working on this problem is to search for
other Pythagorean triples like (3, 4, 5), and see if you notice anything.
Remember—”

“—‘Examples are the key to understanding,’ right?” She poked
me in the chest with a chopstick. “I wondered how long it’d take to
get to that.”

2.2 Rational Points

Miruka pounced as soon as I walked into homeroom.
“And just where have you been?” she demanded.
Miruka was smart in general, but pure genius when it came to

math. Her hair was long and black, and she shunned contacts in favor
of a simple pair of metal frame glasses. She was tall, and beautiful,
and I felt an almost electric charge in the air just being around her.

“Um...on the roof?”
“Lunch?”
“Yeah. Lunch.”
She leaned in, peering into my eyes to see what truths might be

hiding there. I detected a hint of citrus in the air.
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“And you didn’t invite me?”
“Yeah. Uh, no. I mean, you weren’t around. I figured you were

off with Ay-Ay or something...”
How did I end up on the defensive here?
“I was in the teachers’ office, handing in a report to Muraki. I

guess he was expecting me; he already had a new problem waiting.”
Miruka handed me her card. “Weird one this time.”

Problem 2-2

Are there infinitely many rational points on the unit
circle?

“I guess a rational point is one where the x- and y-coordinates
are both rational numbers? Numbers that can be represented as a
ratio of integers, like 1

2 or − 2
5?”

Miruka nodded. “Obviously there are at least some rational points
on the unit circle—(1, 0) and (0,−1), for example.”

“Sure, the intersections with the x- and y-axes. That makes sense.”
“But I’m not sure there are an infinite number of them.”

x

y (0, 1)

(1, 0)

(0,−1)

(−1, 0)

The unit circle and four obvious rational points

“You’d think there’d be an infinite number of others, though,” I
said, half to myself.

“What makes you say that?”
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“Well, there are an awful lot of rational points lying around. Seems
like it would be hard to draw a circle that missed them all.”

“ ‘Seems like’ won’t cut it in math,” Miruka declared. “Never trust
your intuition when you have the tools to be precise.”

“Fine,” I rolled my eyes, “let’s do this the right way then. Take
integers a,b, c,d and represent a point as (a

b
, c
d
), establish the condi-

tion that the point has to be on the unit circle, and start crunching
away.”

“Hmm. That’s one way to do it.” Miruka turned back to the
circle on the chalkboard. “Prime factorization reveals the integers.
Ratios of integers reveal the rationals.” There was a music in her
voice now. “I wonder if there isn’t some way to set up a correlation
between rational points on the unit circle and an infinite number of
somethings...”

The corners of her mouth turned up in a mischievous smile.
“But what I’m really wondering is...” she began.
“Is what?”
“Is who you were having lunch with.”
“Oh.” Just when I thought I was safe. “Tetra.”
Miruka stared at me for a moment, her expression impenetrable.

Finally she straightened, taking a step away from my desk. “For
your honesty and bravery, sir knight, I bestow upon you this sword,”
Miruka said, brandishing a Kit Kat. I took it from her just as the
bell rang for class.

Rational points, I could handle. Girls, I will never understand.

2.3 Yuri

The next day after school I took a bus straight downtown to the
hospital, Tetra in tow. The doctors had found something wrong when
they checked out Yuri’s foot.

We arrived to find Yuri sitting up in bed reading a book, her hair
tied back with a yellow ribbon.

“Oh, you didn’t have to come visit,” she said, but her smile made
it plain how happy she was to see me.

“How you feeling?”
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“I’m fine. I don’t know why everyone is making such a fuss.” Her
smile faded when she noticed Tetra. “Who’s that?”

“A friend from school,” I said.
Tetra held out a small bouquet of flowers she’d bought on the

way to the hospital. “I’m Tetra. Nice to meet you.” Yuri accepted the
flowers without a word.

I sat down in the chair beside Yuri’s bed. Tetra found another
chair and busied herself looking around the room.

“Thanks again for showing me that clock math the other day,”
Yuri said. “It was really cool how you could make it around all the
numbers if everything was relatively prime.”

“He’s a great teacher, isn’t he?” Tetra said. “He’s showing me—”
“And that curry!” Yuri interrupted. “It was sooo spicy. I drank

way too much water. Oh, and that stuff about Fermat’s last theorem
you told me about after dinner—that was way cool, too.”

Tetra shifted in her seat.
Yuri’s mother appeared in the doorway, breaking the uncomfort-

able silence. “Look how handsome you are in your uniform. That
was sweet, coming straight from school. And this must be your
girlfriend !” The conversation only went downhill from there, and
after a few minutes that felt like hours, Tetra and I politely excused
ourselves. We were almost to the elevator when Yuri’s mother caught
up with us.

“You don’t mind if I borrow your girlfriend for a minute, do you?
Yuri wants to tell her something.”

2.4 The Pythagorean Juicer

We took the bus back to the train station and decided to drop into
Beans before heading home.

“You were pretty quiet on the ride back,” I said. “What did Yuri
want?”

“Nothing major,” Tetra replied, before spotting the perfect con-
versation changer. “Oh, cool! Look!”

Beans had installed a fruit juicer. Wire rails supporting a neat
queue of oranges spiraled from its mouth. The barrista hit a button
and the next condemned fruit dropped into the machine, where it was
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guillotined and squeezed, its juices streaming into the glass waiting
below.

“Oh, I have got to have one of those,” Tetra said, squealing with
glee as another orange plummeted to its doom.

* * *
“So good,” Tetra said, setting down her glass. She flipped her note-
book open and slid it across the table. “Look what I brought—more
Pythagorean triples!”

(3, 4, 5) 32 + 42 = 52

(5, 12, 13) 52 + 122 = 132

(7, 24, 25) 72 + 242 = 252

(8, 15, 17) 82 + 152 = 172

(9, 40, 41) 92 + 402 = 412

“How’d you find these?”
“Well, I started with a2 + b2 = c2, and increased a one at a time.

Then I just played around with b and c, setting them to whatever.
I noticed something interesting—in four of the triples I found, c is
just one more than b. Doesn’t that look like some kind of clue?”

“That probably has a lot to do with how you’re searching. When
a is small, you’re going to have a triangle with one short side, right?
Like with (9, 40, 41) there, you get this long, thin triangle. That
means the length of the hypotenuse is going to be close to the length
of the third side.”

“Oh yeah, I guess you’re right.” Tetra cocked her head. “Too bad
we don’t have a machine that spits them out for us. A Pythagorean
juicer! Just dump a bunch of triangles in, and wait for it to squeeze
out a bucket full of primitive Pythagorean triples!”

I rested my face in my hands. “That would make this problem
easier, no doubt.”

2.5 Primitive Pythagorean Triples Revisited

I loved nighttime. With my family in bed and the world asleep, there
were no distractions, no interruptions. I was free to sit at my desk,
thinking about math. This was my time.
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Class can provide some interesting insights, and there’s much to
be learned from books, but without some quality time putting pencil
to paper, it’s never enough.

That night, Tetra’s problem kept bouncing around in my head:
Are there an infinite number of primitive Pythagorean triples?

2.5.1 Checking Parity

I started with the list Tetra had made:

a b c

3 4 5

5 12 13

7 24 25

8 15 17

9 40 41

I noticed c was odd every time. Intrigued, I circled the odd
numbers in the table:

a b c

3 4 5

5 12 13

7 24 25

8 15 17

9 40 41

Interesting. Exactly one of a or b is odd in every case. Coin-
cidence? Or something deeper...?

I jotted down a self-posed problem:

Problem 2-3

Does there exist a primitive Pythagorean triple (a,b, c)
where a and b are both even?
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The answer came surprisingly quickly.
Nope, not gonna happen.
Since (a,b, c) was a Pythagorean triple, I knew that a2+b2 = c2.

If a and b were both even, that meant a2 and b2 would be even
too. Their sum, a2 + b2, would also be even, as would c2, since the
two were equal. But only even numbers can be squared to produce
another even number, which meant c also had to be even.

So if you start with an even a and b, you’ll always get an even c.
But (a,b, c) is a primitive Pythagorean triple, which means those
numbers are relatively prime. And if all three are even, their greatest
common divisor will be at least 2—a contradiction! It was impossible
for a and b to both be even.

I wasn’t sure if that would help with Tetra’s problem, but it was
an interesting find nonetheless. Whenever I wandered through the
forest of mathematics and stumbled across something like this, I
made a point of writing it down on a ribbon and tying it to a nearby
branch. When you get lost, it’s good to have a way to retrace your
steps.

Answer 2-3

There does not exist a primitive Pythagorean triple
(a,b, c) such that a and b are both even.

2.5.2 Trying Equations

Now I knew a and b in a primitive Pythagorean triple couldn’t both
be even. But could they both be odd?

Problem 2-4

Does there exist a primitive Pythagorean triple (a,b, c)
where a and b are both odd?

I decided to try the same approach as before, assuming a and b

were odd and seeing what fell out.
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If a was odd, then a2 would be odd, too. Same with b and b2.
Then a2 + b2 would be a sum of two odd numbers, which would be
even, meaning c2 had to be even since a2 + b2 = c2. If c2 is even
then c must be even, meaning it’s a multiple of 2. Since c2 was the
product of two multiples of two, it in turn must be a multiple of 4.

I sat back and stared at what I’d scribbled down, wondering if
this was getting me anywhere. Not seeing any obvious next steps, I
decided to try building some equations and see where that led.

My premise was that a and b were both odd. That meant I could
use two new positive integer variables J and K, and write a and b

like this: {
a = 2J− 1

b = 2K− 1

I also knew these variables had to work with the definition of
Pythagorean triples, which gave me my starting point:

a2 + b2 = c2 definition of a Pythagorean triple

(2J− 1)2 + (2K− 1)2 = c2 from a = 2J− 1,b = 2K− 1

(4J2 − 4J+ 1) + (4K2 − 4K+ 1) = c2 expand

4J2 − 4J+ 4K2 − 4K+ 2 = c2 clean up

4(J2 − J+ K2 − K) + 2 = c2 factor out a 4

The +2 dangling at the end of the left side of the equation put a
smile on my face—that was a remainder when dividing by 4, meaning
the left side wasn’t a multiple of 4. But I’d just found that c2 had
to be a multiple of 4. And that meant...Contradiction.

So my premise that a and b are both odd must be false, proving
they could not both be odd.

Answer 2-4

There does not exist a primitive Pythagorean triple
(a,b, c) such that a and b are both odd.

Combining this with my previous proof, I’d shown that one of a
or b had to be even. In other words, a and b had to have different
parity.
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That meant there were two possible cases: either a was odd and b

was even, or a was even and b was odd. I decided to let a be the odd
one, and b the even one. Anything I proved under that assumption
could always be proved for the other case, just by swapping the
letters.

My stomach growled as my pencil headed back towards my note-
book.

2.5.3 As a Product

I pulled the Kit Kat from Miruka out of my bag, recalling something
she had said that day. “Prime factorization reveals the integers...”

I definitely wanted to get a deeper look into a2 + b2 = c2, but
how to apply prime factorization to it? Even if I couldn’t manage a
product of primes, some kind of product might be helpful:

a2 + b2 = c2 definition of a Pythagorean triple

b2 = c2 − a2 move a2 to create a difference of squares

b2 = (c+ a)(c− a) a difference of squares is the product

of a sum and a difference

I had my product now, but it wasn’t doing me any good. I couldn’t
claim that c + a and c − a are primes, so I was a long way from
revealing anything.

Then I realized I was having a Tetra moment—I had forgotten
the conditions of the problem, despite all that time I spent figuring
out the parity of a and b. Since I said a is odd and b is even, c must
be odd. And if c and a are both odd, that means c + a and c − a

must be even:

odd+ odd = even

odd− odd = even

Since c and a were both odd, I had this:

c+ a = even

c− a = even
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I introduced three new positive integers A, B, and C, and used
them to set up equations for c+ a, c− a, and b, the things that I
now knew were even: 

c− a = 2A

b = 2B

c+ a = 2C

I worried A might end up a negative number, but soon realized
that couldn’t happen, since a, b, and c were the lengths of sides of a
right triangle, with c the hypotenuse. A hypotenuse would always
be the longest side, guaranteeing that c > a, and thus that 2A > 0.

Okay, let’s play around with A, B, and C then.

a2 + b2 = c2 definition of a Pythagorean triple

b2 = c2 − a2 move a2 to create a difference of squares

b2 = (c+ a)(c− a) a difference of squares is the product

of a sum and a difference

(2B)2 = (2C)(2A) substitute A,B, and C

4B2 = 4AC multiply

B2 = AC divide both sides by 4

Now I had the definition of Pythagorean triples converted into a
product, with a little help from the positive integers A, B, and C.

I’d gotten a lot of mileage out of investigating the parity of a,
b, and c, but I was still wandering in the woods without a path in
sight.

A square on the left, a product on the right. Which way to
head next?

2.5.4 Relatively Prime

I stared at B2 = AC, wondering what it was trying to tell me. Finally
I stood up and started walking in circles to clear my head.

On my fifth trip past the bookshelf, I recalled something I had
told Yuri when she was browsing my books.

Sometimes it’s good to summarize what you know.
I went back to my desk and wrote down a list:
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· c− a = 2Ab = 2B

· c+ a = 2C

· B2 = AC

· a and c are relatively prime

The last item gave me pause. Do I really know that?
I had included it because the definition of primitive Pythagorean

triples says that a, b, and c are relatively prime. But just because
the greatest common divisor of all three numbers is 1, that doesn’t
necessarily mean it would be the case for any two of them. For
example, 1 is the greatest common divisor of 3, 6, and 7, but if you
just looked at 3 and 6, the GCD would be 3.

After some thought I convinced myself I was safe in the case of a
primitive Pythagorean triple, thanks to the equation a2 + b2 = c2.
Here’s how I proved it:

For a primitive Pythagorean triple (a,b, c), assume that
the GCD of a and c is some number g greater than 1.
Then there exist positive integers J,K such that a =

gJ, c = gK. Then b2 is a multiple of g2, as follows:

a2 + b2 = c2

b2 = c2 − a2

b2 = (gK)2 − (gJ)2

b2 = g2(K2 − J2)

b is therefore a multiple of g, as are a and c. However
this contradicts the definition of a primitive Pythagorean
triple, which states that a, b, and c are relatively prime.
The assumption that the GCD of a and c is greater than
1 must therefore be false, meaning their GCD must be
1, and thus that a and c are relatively prime. A similar
argument can be used to show that (a,b) and (b, c) are
likewise relatively prime.

Working that out was a relief, but then I started wondering about
A and C. Could they be relatively prime too?
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Problem 2-5

For relatively prime a and c where c−a = 2A, c+a = 2C,
are A and C relatively prime?

My gut told me they were, but as Miruka would no doubt be
happy to remind me, that wasn’t good enough. I had to prove it.

Proof by contradiction had brought me this far, so I decided to
stick with it. In this case, the statement I wanted to prove was “A
and C are relatively prime,” so I would start from the assumption
that they aren’t. That meant their greatest common divisor was
greater than 1. I decided to again call the greatest common divisor
‘g.’

I knew that g > 2, and since g was the greatest common divisor
of A and C it was a divisor of each. Looked at another way, A and
C were multiples of g. That meant there existed positive integers A ′

and C ′ that satisfied this: {
A = gA ′

C = gC ′

From the problem, I had this:{
c− a = 2A

c+ a = 2C

I tried writing a and c in terms of A ′ and C ′, starting with c:

(c+ a) + (c− a) = 2C+ 2A add the equations

2c = 2(C+A) clean up both sides

c = C+A divide both sides by 2

c = gC ′ + gA ′ A,C in terms of A ′,C ′

c = g(C ′ +A ′) factor out g

The last line told me that c was a multiple of g.
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Next, I tried finding an expression for a:

(c+ a) − (c− a) = 2C− 2A subtract the equations

2a = 2(C−A) clean up both sides

a = C−A divide both sides by 2

a = gC ′ − dA ′ A,C in terms of A ′,C ′

a = g(C ′ −A ′) factor out g

From this I learned that a was a multiple of g, too. So my g > 2
was a common divisor of both a and c. But I’d started out saying
a and c were relatively prime, which meant their greatest common
divisor had to be 1. The contradiction had to be a result of my
premise that A and C were not relatively prime, so using proof by
contradiction I’d shown that they are.

Answer 2-5

For relatively prime a and c where c−a = 2A, c+a = 2C,
A and C are relatively prime.

So now I had established that A and C are relatively prime.
Another ribbon, though I still wasn’t sure if it would be useful. I sat
back and took a deep breath. My eyelids were getting a little heavy,
but the forest beckoned.

2.5.5 Prime Factorization

Looking back through my notes, the equation B2 = AC caught my
eye as a square that was also the product of two relatively prime
numbers.

Interesting...
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Problem 2-6

· A,B,C are positive integers.

· B2 = AC.

· A and C are relatively prime.

Find something interesting.

Not my finest problem statement.
Ah, well. It’s late.
I realized I’d left the a,b, c of my original problem behind, and

was now only dealing with A,B,C. It took me a second to even
remember the original problem: Are there an infinite number of
primitive Pythagorean triples? I hoped I wasn’t going too far astray.

Miruka’s unusual comment kept popping into my head. “Prime
factorization reveals the integers.”

I wondered what a prime factorization of A, B, and C would look
like.

Something like this, I guess:

A = a1a2 · · ·as a1 through as are prime

B = b1b2 · · ·bt b1 through bt are prime

C = c1c2 · · · cu c1 through cu are prime

I tried combining that with B2 = AC to see what would happen:

B2 = AC given

(b1b2 · · ·bt)
2 = (a1a2 · · ·as)(c1c2 · · · cu) prime factorization

b2
1b

2
2 · · ·b2

t = (a1a2 · · ·as)(c1c2 · · · cu) expand the left side

Hmmm...
Writing out a prime factorization of B2 puts it in a form where

every prime factor bk gets squared, meaning there would be an even
number of each factor. Using 182 as an example, you end up with
182 = (2× 3× 3)2 = 22 × 34, two 2s and four 3s.

From the uniqueness of prime factorization, which says there’s
only one way to do the prime factorization of any integer, I knew
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the factors on the left and right sides of this equation would have to
match perfectly; every factor that showed up on the left side would
have to be on the right side somewhere, and vice versa.

Out of the corner of my eye, I caught a glimpse of my second
ribbon, the one that said A and C are relatively prime, fluttering in
a chance breeze.

That’s it! A and C can’t have any prime factors in common!
A prime factor bk of B couldn’t be a factor of both A and C.

Using 22×34 as an example again, I thought about how that number
could be represented as a product of positive integers A and C.

If there’s even one 2 in the prime factorization of A, then all of 22

had to be there. And if there’s even one 3 in the prime factorization
of A, then all of 34 had to be there. There would never be a case
where a prime factor of B2 was split up between A and C. That
meant the factorization of 22 × 34 could only be one of the following
four cases:

A C

1 22 × 34

22 34

34 22

22 × 34 1

Since there had to be an even number of each prime factor, A
and C both have to be square numbers!

Answer 2-6

If

· A,B,C are positive integers,

· B2 = AC, and

· A and C are relatively prime,

then A and C are square numbers.
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Alright, now that’s just cool.
Since A and C are squares, I could represent them in terms of

positive integers m and n: {
C = m2

A = n2

Introducing more variables made me cringe, but I was pretty sure
I’d glimpsed a path out of this thicket, so I forged ahead. If I got
lost, I could just follow the trail back through my notes.

Since A and C don’t have any prime factors in common, m and
n are of course relatively prime. So now I should be able to write
a,b, c in terms of relatively prime numbers m,n.

Starting with a = C−A, I could say this:

a = C−A = m2 − n2

Since a > 0, I knew that m > n. I’d also said a is odd, which
meant m and n had to have different parity.

Next, because c = C+A, I knew this had to be true:

c = C+A = m2 + n2

The last piece in the puzzle was b = 2B.
This one will take a little fiddling.

B2 = AC

B2 = (n2)(m2) from A = n2,C = m2

B2 = (mn)2 cleaning up

B = mn safe to take root, because B > 0,mn > 0

From this, I got:
b = 2B = 2mn

Finally, I could write a,b, c in terms of relatively prime numbers
m,n:

(a,b, c) = (m2 − n2, 2mn, m2 + n2)



44 Fermat’s Last Theorem

I could also go the other way, starting with m and n and using
this to create a primitive Pythagorean triple. I tried it out, just for
kicks:

a2 + b2 =
(
m2 − n2)2 + b2 from a = m2 − n2

=
(
m2 − n2)2 + (

2mn
)2 from b = 2mn

= m4 − 2m2n2 + n4 + 4m2n2 expand

= m4 + 2m2n2 + n4 combine the m2n2 terms

= (m2 + n2)2 factor

= c2 use c = m2 + n2

Some simple calculations would also be enough to show that
a,b, c were relatively prime.

Examining parity, paying attention to conditions of relative prime-
ness, and prime factorization had yielded a wonderful treasure—a
general form for primitive Pythagorean triples. It had taken some
doing to find them, but find them I had.

A general form for primitive Pythagorean triples

All relatively prime positive integers (a,b, c) such that a2+b2 =

c2 can be written in the following form (note that a and b can
be interchanged): 

a = m2 − n2

b = 2mn

c = m2 + n2

where

· m,n are relatively prime,

· m > n, and

· one of m,n is even, the other odd.

From here, Tetra’s problem practically solved itself. Since different
primes would of course be relatively prime, you could just use an



Pythagorean Triples 45

array of them to generate an infinite number of primitive Pythagorean
triples. For example, using n = 2 and m = 3 as a starting point, just
advance m through 3, 5, 7, 11, 13, · · · , and each distinct pair of m,n
would give you a new (a,b, c).

I was exhausted, but that night I fell asleep with a smile on my
face.

Answer 2-1

There are infinitely many primitive Pythagorean triples.

2.6 Finding the Trail

I met Tetra in the library the next day and showed her my solution—
a Pythagorean juicer that would spit out a primitive triple every
time you dropped in an m and an n.

“Oh, come on!” She practically shouted. “He expected me to do
that?”

“Shhh!”
“Sorry, sorry.” She lowered her voice. “Look, this is cool and all,

but it’s way over me. I’m never going to be able to sit down and
come up with something like this off the top of my head.”

“Nobody can. You just have to trudge along until you stumble
across what you’re looking for. Tell you what, how about I walk you
through it, show you why I did what I did.”

“Sure, I guess.”
I squared my shoulders. “First off,” I said, “the fact that we’re

working with integers, not real numbers, is a big deal here. Well only
positive integers, strictly speaking. But anyway, the important thing
is that there’s no smooth continuity like with the reals. The integers
are discrete. Lumpy.

“When you’re dealing with integers, thinking about par-
ity—whether a number is even or odd—can tell you a lot. It only
helps with integers, though, since the reals don’t have evenness or
oddness.”

I grabbed Tetra’s notebook and wrote “parity” in it.
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“When you have an equation in the form 〈integer〉 = 〈integer〉,
you know both sides of the equation will have the same parity. It’s
also helpful to remember that adding two odd numbers gives an even
number, and so does multiplying any number by an even number.”

I added “prime factorization” to the burgeoning list in Tetra’s
notebook.

“You can also learn a lot from prime factorization. Factoring an
integer into primes pulls it apart so you can see what it’s built from.
Also, if you have an equation in the form 〈integer〉 = 〈integer〉, the
uniqueness of prime factorization tells you the factorization of both
sides will be the same. That can be useful too.”

“How do I do that?”
“Start by putting things in multiplicative form. The numbers that

make up the product are called factors. Like in the AC product we
were talking about, the A and the C are factors.”

“Okay. How does having the factors help?”
“Well, you see how a single prime can’t be split across multiple

factors, right, because a prime can’t be broken down any further. So
if you have a product of two factors, a single prime factor will have
to be completely contained in one of them. That’s why I used the
‘product of a sum and a difference is the square of a difference’ rule
to write this here as a product of two integers.”

I pointed to the step in my notebook.
“Knowing how to write words as mathematical symbols is im-

portant, too. Like writing ‘even number’ as 2k, or ‘odd number’ as
2k− 1, or ‘square number’ as k2. It takes some getting used to, but
it’s not hard. Remember how you compared writing math to writing
an essay? Well, you can think of 2k− 1 representing an odd number
as a common mathematical shorthand.”

“Oh, I like that,” Tetra said, adding “mathematical shorthand” to
the list herself. Beneath that, I wrote “relative primeness.”

“Relative primeness is another important concept. If you know
two numbers are relatively prime, you know they don’t share any
prime factors, which was key to solving this problem.”

“At the end here, right? Gotcha.”
“So you just chip away at the problem with a bunch of different

tools. You keep looking until you find the trail leading out of the
forest.”
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Tetra let out a long sigh.
“It’s a lot to take in,” I said.
“Yeah, but I’m getting there. One thing, though. You know how

you kept making new variables, like an ‘odd number’ variable and a
‘square number’ variable and all? I’m really not good at that. Too
afraid it’s just going to make the problem harder, I guess.”

“I know what you mean. Things can get messy if you don’t,
though.”

“If you say so...” Tetra skimmed back over what I’d written. “So
when I’m dealing with integers, I should check parity, try prime
factorization, put them in multiplicative form, divide numbers by
their greatest common divisor to make them relatively prime...”

“Well, those are all things to try, but no guarantee they’ll lead to
anything.”

“I know, they’re just ways to look for the trail.”
“Right. And if you get lost, you can always backtrack and look

for something else.”

2.7 Squeaky

“This was a really interesting problem,” I said. “Feels like there’s
still more to be found, deeper in. Something about the nature of
numbers...”

“I know I’ve said this before,” Tetra said, her voice somber, “but
I want to thank you.”

“For what?” I said.
“Showing me things. I worked hard on this problem. I really did!

But you’ve shown me things that would have taken me forever to
find, if I ever found them at all. The parity and prime factorization
stuff is part of it, but it’s more than that. I’m starting to get a feel
for what it’s like doing math with integers. They’re kinda, I don’t
know, squeaky.”

We both laughed.
“But seriously, I think I underestimated them. For some reason I

thought they’d be easier to deal with than real numbers. But they
aren’t. They’re just...different.”

Tetra’s cheeks flushed.
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“When I’m talking with you, I always learn something different
than what I get from class, or books. I thought I already knew all
this stuff. Pythagorean theorem? Got it! Integers? No problem! But
it turns out I hardly knew the first thing...” She shook her head. “No
giving up now! I might still be deep in the forest, but I’ve got a good
guide.”

2.8 Rational Points on the Unit Circle

The next day, Miruka and I were hanging out in our classroom after
school. She had promised me a fun proof that there are an infinite
number of rational points on the unit circle.

“It all depended on finding an infinite number of somethings,”
she said. “Everything falls into place after that.”

She went to the board and picked up a piece of chalk. My eyes
followed her hand as it traced out a large circle with uncanny preci-
sion.

“First, let’s review the problem,” she said. “We begin with a point
(x,y) and a circle with radius 1, centered at the origin—the unit
circle, which is defined as x2 + y2 = 1. The problem asks if there are
an infinite number of rational points on the circle. In other words, if
there are an infinite number of rational solutions to x2 + y2 = 1.

“Start off drawing a line ` passing though point P(−1, 0) with
slope t: ”

1

P

T

t

Q

x

ℓ
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“Since `’s slope is t, it passes through T(0, t), and its equation
is: ”

y = tx+ t

“If we ignore the case where ` is tangent to the circle at P, we
know it has to intersect the circle at some point other than P. Let’s
call that point Q. We can figure out Q’s coordinates in terms of
t by solving this system of equations, since the solution is their
intersection: ”{

x2 + y2 = 1 equation for the circle

y = tx+ t equation for `

“Okay, let’s solve it: ”

x2 + y2 = 1 equation for the circle

x2 + (tx+ t)2 = 1 substituted y = tx+ t

x2 + t2x2 + 2t2x+ t2 = 1 expanded

x2 + t2x2 + 2t2x+ t2 − 1 = 0 moved the 1

(t2 + 1)x2 + 2t2x+ t2 − 1 = 0 factored out x2

“Nice,” I said. “We know that t2 + 1 6= 0, so it’s a quadratic
equation now. We can just solve it using the quadratic formula.”

“We could, but we already know that x = −1 is a solution, since
it’s the x-coordinate of the point P(−1, 0), so what’s the point? Let’s
factor out that solution, an x+ 1, instead: ”

(x+ 1) ·
(
(t2 + 1)x+ (t2 − 1)

)
= 0

“In other words, we have this: ”

x+ 1 = 0 or (t2 + 1)x+ (t2 − 1) = 0

“Now we’ve got x in terms of t: ”

x = −1,
1− t2

1+ t2
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“We can also write y in terms of t, using the equation for a line.
We know (x,y) = (−1, 0) isn’t Q, so we only need to pay attention
to x = 1−t2

1+t2
: ”

y = tx+ t

= t

(
1− t2

1+ t2

)
+ t

=
t(1− t2)

1+ t2
+ t

=
t(1− t2)

1+ t2
+

t(1+ t2)

1+ t2

=
t(1− t2) + t(1+ t2)

1+ t2

=
2t

1+ t2

“So now we have the coordinates of Q: ”(
1− t2

1+ t2
,

2t
1+ t2

)
“Here’s where the cool trick comes. Ready?”
“Fire away.”
“Remember this point T on the y-axis? How its y-coordinate is

t?”

P

T

t

Q

x

ℓ
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“Sure.”
“See how Q’s coordinates are just combinations of basic arithmetic

operations on t?”
“Yeah. So?”
“ ‘So?’ If you perform basic arithmetic on a rational number,

you’re going to get another rational number back. Which means—?”
“—that if you make t a rational number, Q will be a rational

point. Right.”
“Since there are an infinite number of rational numbers we can

let t be, and since every one will result in a different point Q, we
have our answer.”

Answer 2-2

There are infinitely many rational points on the unit
circle.

“Huh, pretty slick,” I said.
Miruka looked at me, plainly expecting something.
“What?”
“You still don’t see it?”
“See what?”
“Wow, you’re dense today. Tetra’s card. Divide the Pythagorean

theorem through by c2. What do you get?”(
a

c

)2

+

(
b

c

)2

= 1

“Oh, cool! (x,y) = (a
c
, b
c
) is a solution to x2 + y2 = 1. You can

squeeze a unit circle out of the Pythagorean theorem with this!”
“The rational points on a unit circle, at least. So there’s a different

rational point (a
c
, b
c
) for each primitive Pythagorean triple. Saying

there are an infinite number of primitive Pythagorean triples and
that there are an infinite number of rational points on the unit circle
is basically the same thing. The two cards are basically the same
problem! ”
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x

y
(0, 1)

(1, 0)

(0,−1)

(−1, 0)

1 b
c

a
c

The relation between the unit circle and Pythagorean
triples

My jaw dropped.
Miruka shook her head. “You’re slipping.”
I had seen both cards, but Tetra’s card had been all about integers,

and Miruka’s about rational points. Apparently that’s all it took to
throw me off—it never occurred to me that the problems might be
related.

“Yeah, I shoulda caught that.”
“Certainly not the first time Muraki’s had something up his sleeve.

Finding solutions to an equation is pure algebra. Playing with circles
is straight out of geometry.” She looked up at me for a long moment
before concluding, “I guess he wanted to show us a bridge between
the two.”
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